This article will give you an overview of location-specific sampling structures and sampling sizes from consumer research done for Mintel Reports in the Asia-Pacific region. It also has information on additional local specifics where applicable.
Find more information on our research methods in this article and learn about our analysis techniques in this article.
💡 Tip: As a Mintel Reports subscriber you can find all reports within your subscription by applying the Report content type filter on clients.mintel.com. Every report card on clients.mintel.com includes the location for which the report was released in the bottom left corner.
China reports (English version)
Overview
For its China Report series, Mintel has commissioned exclusive consumer research through KuRunData, a Chinese licensed market survey agent. Online consumer research is run in ten cities, completing 300 interviews per city with a total sample size of 3,000.
Our consumer research is based on a random sample of internet respondents from a panel recruited by KuRunData. In each wave, we survey four major tier one cities ie Shanghai, Beijing, Guangzhou and Chengdu. For tier two, tier three or lower cities, we rotate amongst a selection of cities based on size and economic development (see sampling methodology and sampling structure below).
The research is not representative of the population as a whole, and is not being analysed as such. Mintel applies a quota-sampling approach with quotas on age, gender and monthly household income in these cities. Our sample data can only be considered as indicative of urban consumers in those regions rather than representative of China as a whole.
For category reports (eg chocolate confectionery), consumers will typically be asked about usage, frequency, location of purchase, consumption occasion, brand usage and a series of attitudinal statements about the category.
Lifestyle reports cover a broader range of attitudinal and behavioural topics.
Statistical confidence levels
Statistical confidence levels of +/- 2% or 3% can be applied to the data, depending on sample size and percentage of respondents. For example, if 20% of a total sample of 1,000 adults say that they do something, you can be 95% certain that the figure for the population lies between 17% and 23%. For a sample of 3,000 adults, you can be 95% certain that the figure lies between 18% and 22%.
Consumer research is stored in a database supervised by Mintel's statisticians. Additional analysis of information too abundant to be included in published reports can be made available upon request.
When the overall population of a city is large enough (> 20,000), sample size is not determined by the size of population. It is only when the population becomes quite small (eg less than 10,000) that the sample size calculation is affected.
As a result a sample size of 300 per city across all 10 cities in our survey was set. Statistically, this enables us to apply a confidence level at 95% with a margin of error of 5.66%.
Meet the Mintropolitans
There has long been unresolved debate as to how to define the middle class in China, using various formulas about income levels, educational attainment and ownership of certain key items. However, the notion of middle class is very much an invention of 19th century North America and Western Europe, and does not comfortably translate that well into 21st century China.
So, rather than continue to struggle to make the round peg of China fit into the square hole of the middle class, Mintel has decided to use a clear and practical definition to define those who not only have higher spending power but can also represent future consumption trends as Mintropolitans. They had to meet all of the following requirements.
They need to have a higher level of income, depending on which city they live in:
a household income of RMB 18,000 per month or more in tier one cities
a household income of RMB 16,000 per month or more in tier two, three or lower cities
They need to have a higher level of education, ie undergraduate or above.
They need to own a property – either outright or on a mortgage.
Lastly, they also need to demonstrate certain spending attitudes and lifestyles, chosen by Mintel to indicate their spending power, as well as reflecting their pursuit of a quality life.
Broadly, they should represent a sophisticated group of consumers who pursue quality of life rather than just wealth, are well educated and are the potential trendsetters.
Based on demographic data from the consumer research conducted across multiple Mintel Reports, Mintropolitans account for about 15% of total surveyed households – representing a population of 27 million households who live in China.
Compared to other groups of consumers, besides having a higher income, Mintropolitans are much more likely to be aged 30-39, married with children, have a postgraduate degree and work for foreign companies (compared to Non-Mintropolitans).
Sampling methodology and sampling structure
According to government figures, there are 645 cities in China. These cities are very different in terms of size, economic development, culture, history and lifestyle. To meet your interests (by region, by tier), ten cities are selected in each wave of research based on their geographic coverage and level of economic development (GDP and per capita income).
Mintel defines the tier levels of cities in China as follows.
Tier one: Major economic hubs
Tier two: Provincial capital cities and some developed non-provincial capital cities
Tier three or lower: Other cities beside Tier one and Tier two cities
The table below shows an example of cities covered.
Region | Tier one cities | Tier two cities | Tier three or lower cities | Total |
North China | Beijing | Shenyang |
| 2 |
East China | Shanghai | Hangzhou | Jinhua | 3 |
Middle China |
| Wuhan |
| 1 |
West China | Chengdu |
| Hengyang | 2 |
South China | Guangzhou | Fuzhou |
| 2 |
Total | 4 | 4 | 2 | 10 |
📌 Note: Tier two, tier three, or lower cities in the table above are shown as examples only.
Within each city, our sampling structure is presented below.
Gender and age
In all cities, the sample consists of 50% men and 50% women for each of the following age groups:
18-29
30-39
40-49
50-59
Monthly household income in RMB
We defined three different levels for monthly household income according to different city tier:
Tier one cities
RMB 6,000 - 9,999
RMB 10,000 - 17,999
RMB 18,000 or above
Tier two, three or lower cities
RMB 5,000 - 8,999
RMB 9,000 - 15,999
RMB 16,000 or above
Chinese Consumer Monthly Tracker
The table below shows the cities we cover.
Region | Tier one cities | Tier two cities | Tier three or lower cities |
North China | Beijing | Haerbin | Xingtai |
East China | Shanghai | Hangzhou | Changzhou |
Mid-West China | Chengdu | Wuhan | Xinyang |
South China | Guangzhou | Fuzhou | Zhanjiang |
中国:研究方法
概貌
英敏特委托中国具有许可证的专业消费者调查机构——库润数据完成中国系列报告的独家调查取样。在线消费者调查在10个城市抽样,每个城市的样本量为300人,总样本共计3,000人。
我们的消费者研究是基于互联网使用者的随机抽样调查。这些被访者是由中国在线研究机构库润数据选取(详细情况请见下文)。在每一轮调查中,我们收集4个一线城市的数据,即上海、北京、广州和成都。对于二、三线及以下城市,我们根据其城市规模和经济发展情况,每次抽取不同的城市进行调查(见下文)。
研究不能代表所有的中国消费者,也不是以此为目的进行分析的。英敏特采用配额抽样的方法,在调查城市中根据消费者年龄、性别和家庭月收入等特性抽取有代表性的样本。我们的样本数据只能代表这些城市中的都市消费者,而不能代表整个中国的情况。
对于分类报告(例如巧克力糖果),消费者通常会被问及使用情况、消费频率、购买渠道、消费场合、品牌偏好和一系列对于此类别产品的态度和看法。生活方式报告探究消费者的态度和行为,话题涵盖范围广泛。
显著性检验
从统计学角度而言,根据样本量大小的不同,数据的误差水平仅在+/-2%到3%左右。例如, 如果在1,000个被访者中有20%表示他们会做某件事情,那么在95%的情况下,在总人群中做这件事情的人群比例约为17%-23%左右。当样本量扩大到3,000个时,在95%的情况下,这一百分比约为18%-22%。
所有的调研数据都储存在英敏特的数据库中。若您需要查看报告中没有显示出来的某些分析,我们也可以为您提供。
当一个城市的总人口数足够多时(>20,000),样本大小不由人口数量决定。只有在人口数量相当少时(比如低于10000),样本大小的计算会受到影响。
所以,在我们的调查中,所有10个城市中的样本大小被定为300。就统计数据而言,这使我们的调查信心水准为95%,误差仅为5.66%。
认识英敏特城市精英人群
长久以来,对于如何定义中国“中产阶级”的争论持续不断,涉及收入水平、教育水平和是否拥有某些关键物品的各种计算公式层出不穷,但一直没有得到定论。“中产阶级”的概念大约形成于19世纪的北美和西欧,用于描述21世纪的中国可能早已不合时宜。
英敏特认为,与其简单地套用“中产阶级”这一模糊的概念,应该用一个明确、可行的定义来识别消费者中具有经济实力,并且在消费观上代表了未来趋势的细分人群。为此,英敏特提出了“英敏特城市精英人群”(Mintropolitans) 这个概念,并且列出了一系列的标准用于甄别这群消费者。他们需要同时满足以下四个条件:
他们必须在所居住的城市中拥有较高的收入水平:如果是一线城市,家庭月收入要在18,000元人民币或以上;如果是二、三线及以下城市,家庭月收入要在16,000元人民币或以上。
他们必须接受过高等教育:大学本科或以上。
他们必须拥有房产——无论已还清房贷还是正在还房贷。
最后,他们还需要体现一些消费理念和生活方式的特征,英敏特选择这些标准来衡量人们的消费能力和对生活品质的追求。
概括而言,他们代表一批不仅追求财富还追求生活品质、受过良好教育以及能够引领潮流的成熟消费人群。
根据英敏特报告所收集的消费者人口统计数据,英敏特城市精英人群在所有受访的城市家庭中的占比为15%,相当于2,700万户家庭人口。
除了具有较高收入以外,英敏特城市精英人群相比其他人群更有可能是30-39岁,已婚已育,拥有研究生学历,以及在外企工作。
抽样方法和抽样结构
根据政府数据,中国有645个城市。这些城市的规模大小、经济发展、文化历史和生活方式不尽相同。为了满足英敏特客户的不同关注点(区域、城市大小),我们在每轮调查中根据城市的地理位置和经济发展水平(如国内生产总值、人均收入)选取10个不同的城市进行抽样
英敏特按以下标准定义划分中国城市的线级:
一线城市:大型经济中心
二线城市:省会城市及经济较发达的非省会城市
三线及以下城市:一、二线以外的其他城市
下表为所选城市示例。
地区: | 一线城市 | 二线城市 | 三线及以下城市 | 总数 |
中国北部 | 北京 | 沈阳 |
| 2 |
中国东部 | 上海 | 杭州 | 金华 | 3 |
中国中部 |
| 武汉 |
| 1 |
中国西部 | 成都 |
| 衡阳 | 2 |
中国南部 | 广州 | 福州 |
| 2 |
总数 | 4 | 4 | 2 | 10 |
📌 注:上表所列二、三线及以下城市仅为示例。
性别与年龄
在所有访问的城市中,每个城市都由以下年龄段的一半男性一半女性组成:
18-29
30-39
40-49
50-59
家庭月收入
我们根据不同城市级别将家庭月收入分为3组。
一线城市
6,000 - 9,999元人民币
10,000 - 17,999元人民币
18,000元人民币及以上
二、三线及以下城市
5,000 - 8,999元人民币
9,000 - 15,999元人民币
16,000元人民币及以上
中国消费者月度追踪
下表为所选城市。
地区 | 一线城市 | 二线城市 | 三线及以下城市 |
中国北部 | 北京 | 哈尔滨 | 邢台 |
中国东部 | 上海 | 杭州 | 常州 |
中国中西部 | 成都 | 武汉 | 信阳 |
中国南部 | 广州 | 福州 | 湛江 |
India reports
Mintel conducts face-to-face interviews with consumers representative of four broad regions of India, covering metros as well as cities in tiers 1 to 3, of ages ranging from 18 to 65 and socio-economic classes A to C. For more targeted reports, focusing on topics such as Alcohol or Baby Food, the methodology may vary.
Mintel's research partner in India is Ipsos Observer, which is part of Ipsos India.
📌 Note: From 2020 to 2022, the research was conducted using an online methodology due to the COVID-19 pandemic.
The CAPI (Computer assisted personal interview) is carried out using internet-enabled Android tablets. In order to achieve the required quotas for age, gender and socio-economic group, interviews are conducted door-to-door in seven local languages (Hindi, Gujarati, Marathi, Bengali, Oriya, Telugu and Tamil). Respondents are also given the option to take the survey in English if they wish to do so.
We apply the following four layers of quality checks:
accompanying the interviewer on 2% to 5% of the total sample
phone checks on 20% of the total sample
interview audio file assessment on 20% of the total sample
automated GPS location of the interviewing place in all cases
Mintel applies interlocking quotas on age by gender, region by socio-economic class and city tier by region. The sample is skewed towards the higher socioeconomic classes, A and B. Our face-to-face sample data can be considered as indicative of urban consumers rather than representative of India as a whole. While it does give a proxy of the nation’s attitudes it has been designed to provide comparable, robust results for a wide range of demographic segments.
Rather than mirror exactly India’s population distribution, sample sizes have been selected to provide comparable figures between regions, tiers and age groups. Specific quotas for a sample size of 3,000 people are listed below.
Region | City | Tier | N (3,000) |
North | Delhi | Metro | 300 |
| Lucknow | Tier 1 | 150 |
| Jalandhar | Tier 2 | 150 |
| Ambala | Tier 3 | 150 |
East | Kolkata | Metro | 300 |
| Patna | Tier 1 | 150 |
| Bhubaneswar | Tier 2 | 150 |
| Aurangabad (Bihar) | Tier 3 | 150 |
South | Chennai | Metro | 300 |
| Coimbatore | Tier 1 | 150 |
| Tiruppur | Tier 2 | 150 |
| Amravati | Tier 3 | 150 |
West | Mumbai | Metro | 300 |
| Ahmedabad | Tier 1 | 150 |
| Anand | Tier 2 | 150 |
| Lonavala | Tier 3 | 150 |
In all regions, the sample consists of 75 men and 75 women for each of the following age groups:
18-24
25-34
35-44
45-54
55-65+
Socio-economic classification in %
Region | N (3,000) | A | B | C |
North | 750 | 45 | 29 | 26 |
South | 750 | 40 | 28 | 32 |
East | 750 | 27 | 33 | 40 |
West | 750 | 34 | 34 | 32 |
Japan reports (English version)
For our Japan Report series, we use an online research approach to interview consumers covering all ages from 18. Respondents are interviewed from all prefectures which are then grouped into six broad regional groups for reporting. Our Japanese consumer survey is conducted in cooperation with Rakuten Insight.
We apply a quota-sampling approach with quotas on age, gender and broad region. Specific region quotas and used to represent a sample of 2,000 respondents are shown below. For more targeted reports, focusing on topics such as mothers, the methodology will vary.
📌 Note: Our sample data cannot be considered to be nationally representative of Japan. Instead, we cover key demographics to give a proxy of the nation’s attitudes and behaviours. It has been designed to provide comparable, statistically robust results of the most relevant demographic and geographic segments for analysis.
Age groups by gender | Population % | N (2,000) |
Men, 18-24 | 5 | 100 |
Men, 25-29 | 5 | 100 |
Men, 30-39 | 10 | 200 |
Men, 40-49 | 10 | 200 |
Men, 50-59 | 10 | 200 |
Men, 60-64 | 5 | 100 |
Men, 65+ | 5 | 100 |
Women, 18-24 | 5 | 100 |
Women, 25-29 | 5 | 100 |
Women, 30-39 | 10 | 200 |
Women, 40-49 | 10 | 200 |
Women, 50-59 | 10 | 200 |
Women, 60-64 | 5 | 100 |
Women, 65+ | 5 | 100 |
Region | % | N (2,000) |
Hokkaido and Tohoku | 11.0 | 220 |
Kanto | 34.4 | 688 |
Chubu and Hokuriku | 18.2 | 364 |
Kinki | 16.3 | 326 |
Chugoku and Shikoku | 8.8 | 176 |
Kyushu and Okinawa | 11.3 | 226 |
日本
Mintel Japan Reportでは、18歳以上の全国の日本の消費者を対象としたネットリサーチを実施している。サンプル設計は以下の通り。弊社の日本の消費者調査は楽天インサイト社の協力によりネットリサーチにて実施している。
性年代による均等割付。全国を6つの地域に分け、人口統計比に合わせて割付。サンプル構成は日本の人口統計比ではないが、統計的な日本市場の現状把握を目的とした消費者調査分析に必要な属性群を全て網羅すると共に、統計学的に十分なサンプル数を確保することで日本市場の状況に近しいデータとしている。
弊社の日本の消費者調査では2000サンプルを性年代均等割付するほか、全国を6つの地域に分けて人口統計比に合わせた割付を実施。それぞれの割付詳細は以下を参照。
|
| % | N (2,000) |
男性 | 18-24歳 | 5 | 100 |
| 25-29歳 | 5 | 100 |
| 30-39歳 | 10 | 200 |
| 40-49歳 | 10 | 200 |
| 50-59歳 | 10 | 200 |
| 60-64歳 | 5 | 100 |
| 65歳以上 | 5 | 100 |
女性 | 18-24歳 | 5 | 100 |
| 25-29歳 | 5 | 100 |
| 30-39歳 | 10 | 200 |
| 40-49歳 | 10 | 200 |
| 50-59歳 | 10 | 200 |
| 60-64歳 | 5 | 100 |
| 65歳以上 | 5 | 100 |
% | N (2,000) | 地域 |
11.0 | 220 | 北海道、東北 |
34.4 | 688 | 関東 |
18.2 | 364 | 中部、北陸 |
16.3 | 326 | 近畿 |
8.8 | 176 | 中国、四国 |
11.3 | 226 | 九州、沖縄 |
Thailand reports (English version)
Mintel partners with Dynata and uses an online research approach to interview consumers covering age groups from 18-45+. Respondents are interviewed in regions and/or metro cities to represent the population distribution across each market for reporting.
We apply a quota-sampling approach with quotas on age, gender and broad region or metro city. The quotas on age and gender are selected in a consistent way per location to allow ease of comparison and analysis across a variety of key target groups. For more targeted reports, focusing on topics such as baby products, the methodology will vary.
Age groups by gender | % | N (1,500) | N (2,000) |
Women, 18-24 | 12.5 | 188 | 250 |
Women, 25-34 | 12.5 | 188 | 250 |
Women, 35-44 | 12.5 | 187 | 250 |
Women, 45+ | 12.5 | 187 | 250 |
Men, 18-24 | 12.5 | 188 | 250 |
Men, 25-34 | 12.5 | 188 | 250 |
Men, 35-44 | 12.5 | 187 | 250 |
Men, 45+ | 12.5 | 187 | 250 |
📌 Note: Our sample data is not nationally representative. Our online, quota-sampling approach provides comparable, statistically robust data and allows analysis of key demographic and geographic groups by market.
The table below shows the split by location.
Region/City | % | N (1,500) | N (2,000) |
Greater Bangkok | 10.4 | 156 | 208 |
Central Thailand (excl Greater Bangkok) | 23.3 | 350 | 466 |
North Thailand | 18.8 | 282 | 376 |
Northeast Thailand | 34.2 | 512 | 684 |
South Thailand | 13.3 | 200 | 266 |
ประเทศไทย
พันธมิตรของ Mintel กับ Dynata (ชื่อบริษัทเดิม Research Now SSI) ร่วมกันทำงานวิจัยออนไลน์ในประเทศไทย Mintel ใช้การวิจัยแบบออนไลน์ในการสัมภาษณ์ผู้บริโภค โดยครอบคลุมช่วงอายุตั้งแต่ 18-45 ปี ขึ้นไป ซึ่งผู้ร่วมทำการวิจัยจะถูกทำการสัมภาษณ์ในแต่ละภูมิภาค และ/หรือ เขตเมือง โดยใช้เป็นตัวแทนกลุ่มตัวอย่างของการกระจายตัวของประชากรในแต่ละตลาด เพื่อทำการรายงาน Mintel ใช้วิธีการสุ่มตัวอย่างโควต้ากับโควต้าด้านอายุเพศและภูมิภาค หรือเมืองใหญ่ ข้อมูลตัวอย่างของเราไม่ได้เป็นตัวแทนในระดับประเทศ วิธีการสุ่มตัวอย่างแบบออนไลน์และโควต้าของเราให้ข้อมูลมีความเสถียรทางสถิติและสามารถทำการวิเคราะห์กลุ่มประชากรและภูมิศาสตร์ที่สำคัญตามตลาด
โควต้าสำหรับอายุ และเพศ ถูกเลือกสุ่มอย่างเท่าๆ กัน เพื่อให้ง่ายต่อการเปรียบเทียบและวิเคราะห์ในกลุ่มเป้าหมายหลักได้อย่างหลากหลาย
อายุ และเพศ | % | จำนวน (1,500) | จำนวน (2,000) |
ผู้หญิง 18-24 ปี | 12.5 | 188 | 250 |
ผู้หญิง 25-34 ปี | 12.5 | 188 | 250 |
ผู้หญิง 35-44 ปี | 12.5 | 187 | 250 |
ผู้หญิง 45 ปี ขึ้นไป | 12.5 | 187 | 250 |
ผู้ชาย 18-24 ปี | 12.5 | 188 | 250 |
ผู้ชาย 25-34 ปี | 12.5 | 188 | 250 |
ผู้ชาย 35-44 ปี | 12.5 | 187 | 250 |
ผู้ชาย 45 ปี ขึ้นไป | 12.5 | 187 | 250 |
ภูมิภาค/เขตเมือง | % | จำนวน (1,500) | จำนวน (2,000) |
กรุงเทพ | 10.4 | 156 | 208 |
ภาคกลาง (ยกเว้น กรุงเทพ) | 23.3 | 350 | 466 |
ภาคเหนือ | 18.8 | 282 | 376 |
ภาคตะวันออกเฉียงเหนือ | 34.2 | 512 | 684 |
ภาคใต้ | 13.3 | 200 | 266 |